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Abstract 

Access to safe and nutritious food is key to ensuring health and well-being and is critical to meeting the United 
Nations’ Sustainable Development Goals. However, a synthesis of the associations between foodborne illness 
and malnutrition, such as metabolic health, remains a gap in the literature base. In this review, we summarized exist-
ing evidence on the impacts of biological and chemical hazards on nutrition-related health outcomes, specifically 
overweight and obesity, inflammation, metabolic disease, thyroid function, cancer development, and adverse birth 
outcomes, examining physiological mechanisms, epidemiological associations, and animal studies. Mechanisms 
between some foodborne hazards, such as H. pylori, and adverse pregnancy outcomes, e.g., gestational diabetes mel-
litus, or between nitrates and impaired thyroid function, are relatively well-studied. However, evidence on the effects 
of many other chemical hazards on metabolic and human health remains limited: for example, while arsenic exposure 
is associated with adverse birth outcomes, the limited availability of dose-response studies and other challenges 
limit ascertaining its causal role. Untangling these associations and physiological mechanisms is of high relevance 
for both high- as well as low- and middle-income countries. Emerging technologies and novel assessment tech-
niques are needed to improve the detection and understanding of understudied and complex foodborne dis-
eases, particularly those arising from chemical hazards. These evidence gaps are highlighted in this review, as well 
as the need for establishing surveillance systems for monitoring foodborne diseases and metabolic health outcomes 
across populations.
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Background
The availability of healthy foods that are safe to con-
sume is paramount to achieving global food and nutri-
tion security [1]. Adequate nutrition is crucial to health 
and well-being; poor-quality (e.g., high-energy with low 

nutrient density) diets have consistently ranked among 
the top risk factors for morbidity and mortality world-
wide [2, 3] and are often the focus of dietary recom-
mendations, guidelines, and programming. However, 
improving diets, and subsequently health, requires food 
to be safe. Food safety, defined as “the absence—or safe, 
acceptable levels—of hazards in food that may harm 
the health of consumers” [4] is also critical to achieving 
the United Nations’ Sustainable Development Goal 2 to 
“end hunger, achieve food security and improved nutri-
tion and promote sustainable agriculture” [5]. The bidi-
rectional relationship between exposure and impacts of 
foodborne diseases (FBDs) and health outcomes related 
to nutrient intake and absorption, inflammation, and 
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metabolic health leading to metabolism-related disor-
ders, and chronic disease development such as cancer [6] 
is critical to understand but remains mostly overlooked.

FBDs refer to a range of acute and chronic adverse 
health outcomes caused by foodborne hazards such as 
pathogenic microbes and helminths, chemical com-
pounds, and biogenic toxins ingested with food [7]. In the 
longer term, exposure to foodborne hazards exacerbates 
socioeconomic and health disparities, particularly in low- 
and middle-income countries (LMICs). While economic 
consequences can include increased healthcare costs, 
lost productivity, and declining local and global trade [1], 
the health impacts of unsafe food are striking. Together, 
31 foodborne hazards—including 11 diarrheal disease 
agents, 10 helminths, seven invasive infectious disease 
agents, and three chemicals/toxins—were responsible 
for 600 million episodes of FBD, 420,000 deaths, and 33 
million disability-adjusted life years (DALYs) in 2010 [7]. 
In the most recent 2021 update, the global age-standard-
ized DALYs of enteric infections was 1020.15 per 100,000 
population [8].

Many of the major health impacts of compromised 
food safety are known, as are the major impacts of 
malnutrition [9]; however, the effects of exposure to 
foodborne hazards—such as pathogens and chemical 
agents—on nutrition-relevant outcomes remain poorly 
understood, in both direction of causality and in their 
joint contribution to health outcomes [6]. While increas-
ing evidence exists on the association between diarrheal 
disease and stunting, an endpoint relevant to nutrition, 
evidence is still scattered on other health endpoints rel-
evant to both foodborne exposure and nutrition, such as 
inflammation and metabolic health like glucose or lipid 
metabolism and chronic disease condition like cancer. 
Chronic low-grade inflammation could disrupt metabolic 
homeostasis and favor the development of a wide range 
of noncommunicable diseases (NCDs) such as diabetes, 
cardiovascular diseases, and cancer [10]. With the rising 
prevalence of NCDs, it is essential to tackle the related 
factors across various domains including exposure to 
foodborne hazards such as cyanogenic glycosides, myco-
toxins, or heavy metals.

In this review, we illustrate current evidence examples 
of physiological or epidemiological associations between 
acute or chronic FBDs and nutrition-relevant outcomes 
[6, 11]. We focus on foodborne hazards associated with 
inflammation and metabolic health endpoints while 
mentioning that the foodborne hazards associated with 
gastrointestinal health, nutrient absorption, and growth 
and development have been extensively reviewed else-
where [12–14].

Type of hazards related to foodborne diseases 
and their health implications
Biological hazards
Biological hazards include certain bacteria, viruses, pro-
tozoa, fungi, and helminths that can result in disease. 
Among these, bacteria are one of the most prevalent bio-
logical foodborne hazards [15]. Acute gastrointestinal ill-
ness (AGI) is among the most common manifestations 
of FBD and presents with a variety of symptoms such 
as diarrhea with or without hemorrhage, constipation, 
nausea, vomiting, and abdominal pain, as well as imme-
diate consequences of diarrhea such as dehydration and 
blood loss. This has been studied in human populations 
as well as experimental studies and extensively reviewed 
[12–14] and is discussed briefly here. Food- and water-
borne AGI are most commonly caused by microbial 
hazards and often present with diarrheal symptoms. 
Inflammatory diarrhea—an AGI—can be caused by non-
invasive organisms (e.g., non-invasive pathogenic Escher-
ichia coli (E. coli) strains such as enterohemorrhagic E. 
coli (EHEC)) that stimulate the release of inflammatory 
mediators in the intestinal mucosa or by invasive organ-
isms (e.g., enteroinvasive E. coli (EIEC), Shigella spp., and 
Salmonella spp.), via activation of cytokines and inflam-
matory mediators [16]. Research has suggested that ele-
vated exposure to some enteropathogens, in the absence 
of diarrheal illness, may adversely impact nutrition out-
comes such as growth. It is hypothesized that cryptic 
enteric pathogen exposure contributes to impairing gut 
function and altering nutrient absorption and immunity 
[17]. The evidence of chronic inflammation and reduced 
intestinal nutrient absorption due to infections and its 
lasting negative effects on linear growth has been exten-
sively covered by other reviews [18]. The World Health 
Organization (WHO) identified norovirus, Campylo-
bacter, and non-typhoidal Salmonella as major causes 
of foodborne diarrhea, with a significant burden in sub-
Saharan Africa, where rotavirus, pathogenic E. coli, ade-
novirus, and Giardia lamblia are common pathogens in 
children under five [7, 14].

Foodborne pathogens are not only responsible for 
enteric or diarrheal symptoms but also manifestations 
including among others fever, pain, kidney failure, hemo-
lytic uremic syndrome, jaundice, meningitis, ulcers, 
paralysis, miscarriage, and septicemia [19]. Further-
more, acute FBD can lead to severe long-term sequelae 
including irritable bowel syndrome, inflammatory bowel 
disease, reactive arthritis, Guillain-Barré Syndrome, neu-
rological and cognitive impairment, and kidney disease, 
among those currently most supported by evidence as 
described in a 2019 scoping review [20].
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Chemical hazards
Foodborne disease caused by ingested chemicals can 
result from naturally occurring chemicals (e.g., cyano-
genic glycosides in cassava or solanine in potatoes and 
other Solanaceae plants) or end-products from micro-
bial metabolism, i.e., biogenic chemicals (e.g., myco-
toxins such as fumonisins and aflatoxins, or bacterial 
toxins from spores formed by Bacillus cereus) [21–24]. 
There is evidence that mycotoxins, which contaminate 
a wide range of staple foods across LMICs, potentially 
contribute to childhood stunting by mediating intestinal 
damage, inflammation, and the development of environ-
mental enteric dysfunction (EED) [21, 22]. Exposure to 
foodborne mycotoxins such as aflatoxin, fumosin, and 
deoxynivalenol is suspected to impair child growth by 
mediating EED and intestinal damage [21]. Nitrites used 
in food processing have been associated with higher risks 
of breast, prostate, thyroid, and colorectal cancers via 
inhibiting iodide update and the formation of carcino-
genic compounds [25, 26].

Exposure to agricultural pesticides, fertilizers, and 
industrial byproducts through ingested food (e.g., heavy 
metals like cadmium and arsenic, and polychlorinated 
biphenyls (PCBs)) have been associated with higher risks 
of colorectal, liver, and kidney cancers and cardiovascular 
diseases [23, 27–29]. Heavy metals can accumulate in the 
skeleton and adipose tissues, depleting specific nutrients 
in the body and resulting in deficits of the central nerv-
ous system, as well as cardiac, gastric, hematological, 
and cognitive function, and intrauterine growth [23, 30]. 
One example is cadmium, a heavy metal that is toxic to 
humans [31–33]. Dietary cadmium has been shown to 
promote colorectal cancer metastasis, liver, kidney, and 
cardiovascular disease [27–29]. In terms of arsenic, some 
evidence suggests that malnourished individuals, regard-
less of age, are more susceptible to the detrimental health 
effects—skin lesions, neuropathy, gastrointestinal symp-
toms, diabetes, cardiovascular disease, and cancer—of 
dietary arsenic exposure, and these effects can take years 
of chronic exposure to develop [34]. In addition, PCBs 
have been known to adversely affect children’s neurologi-
cal development and increase the risk of attention deficit 
disorders, autism, cerebral palsy, and mental retardation 
[23, 35]. Food contaminated by chemicals from PCBs and 
crop pesticides causes neural and kidney damage, repro-
ductive problems, and cancer [36, 37].

There is evidence from in vitro, animal models, as well 
as epidemiological studies that endocrine-disrupting 
compounds (EDCs, also known as endocrine disruptors 
or hormonally active agents) can leach from everyday 
products such as plastic beverage bottles and food con-
tainers into food and are highly correlated with male and 
female infertility, obesity, diabetes, and fetal development 

[38]. EDCs interfere with hormone production, metabo-
lism, and/or transport throughout the body [39]. The 
common EDCs are PCBs, dichlorodiphenyltrichloroeth-
ane (DDT), bisphenol A (BPA), phthalates, and dichlo-
rodiphenyldichloroethylene (DDE).

Chemical hazards can also enter the food system via 
wastewater. While there are numerous processes in 
place, e.g., microbial digestion, to remove contaminants 
from wastewater [40, 41], many chemicals are unaffected 
by such mitigation leading to their direct consump-
tion through drinking water or food preparation [42, 
43]. The potential risk to human health increases when 
these chemical hazards accumulate in the food chain 
[42]. Agricultural use of contaminated wastewater on 
crops can lead to the bioaccumulation of certain con-
taminants, including heavy metals. If these crops are also 
used to feed livestock, further bioaccumulation can occur 
rendering the effective dose of a particular contaminant 
higher than it would have been at its source (the original 
wastewater) [42, 44].

Association between food hazards, inflammation, 
and metabolic health
Table 1 illustrates examples of the impacts of foodborne 
hazards, both biological and chemical, on inflammation 
and  metabolic health —endpoints that are also relevant 
to nutrition. Below, we describe these in more detail.

Overweight and obesity
Foodborne hazards have been associated with weight 
gain or loss through various pathways. Strong short-term 
associations exist between AGI and weight loss, while 
long-term associations are less well defined [59]. Patho-
gens like Cyclospora cayetanensis, Taenia saginata, Tae-
nia solium, and Cryptosporidium, to name a few, cause 
loss of appetite, nausea, diarrhea, and vomiting, which 
eventually leads to weight loss [60]. Helicobacter pylori 
(H. pylori) infection was also found to be associated with 
an increased likelihood of hyperemesis gravidarum dur-
ing pregnancy, which is a severe manifestation of nausea 
and vomiting, weight loss, dehydration, electrolyte imbal-
ances, and ketonuria in nearly 40 cross-sectional and 
case–control studies [45]. EDCs have also been hypoth-
esized to induce weight gain, acting as “obesogens,” by 
interfering with the endocrine system [61], via pathways 
such as increased oxidative stress and lowered thyroid 
hormone levels, due to organochlorine pesticides and 
PCBs, and slower metabolic rates [62]. Other hormones 
that are also affected by chemical toxins are estrogen, 
testosterone, corticosteroids, insulin, growth hormone, 
leptin, and catecholamines [63]. Agents with obesogenic 
potential (e.g., persistent organic pollutants (POPs), 
BPA, PCB) can act through impairing thermogenesis, 
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increasing adipocyte cell differentiation, or interaction 
with steroid hormone receptors [54, 55]. Mechanisms for 
POP-related obesity in humans are incompletely under-
stood; however, evidence from in vivo and in vitro studies 
suggests thermogenesis impairment through a decrease 
in brown adipose ribonucleic acid [52]. In contrast, BPA 
has been suggested to cause an increased adipocyte cell 
differentiation leading to excess fat accumulation [55], 
while PCBs have been suggested to antagonize steroid 
hormone receptors or induce specific metabolic path-
ways that can either increase or decrease body weight 
[52, 54, 55]. The evidence on the effects of chemical haz-
ards and body weight is variable, highlighting a need for 
further research.

Metabolic disease
Metabolic disease can impair physiological processing 
and use of nutrients, hence affecting nutrition processes 
and outcomes. Several foodborne hazards have been 
associated with metabolic disease. Chemical hazards 
that can affect glucose metabolism include phthalates, 
which can alter receptors that contribute to adipogen-
esis, lipid metabolism, and metabolic homeostasis, or 
act via induction of oxidative damage [51]. H. pylori 
is a pathogen highly prevalent in LMICs which can be 
spread through feces as well as contaminated water and 
food [64, 65]. H. pylori infection contributes to metabolic 
disease via different pathways—for example, one review 
found H. pylori-induced inflammation caused insulin 
resistance and the development of diabetes mellitus [66]. 
H. pylori has also been shown to cause changes in perina-
tal glucose metabolism and subsequently inhibit insulin-
receptor interactions, leading to strong associations with 
gestational diabetes mellitus [46]. It can also affect the 
production of the hunger hormones ghrelin and leptin 
subsequently modulating the secretion of the growth hor-
mone [65], which may lead to growth retardation among 
malnourished children or children exposed to H. pylori in 
early childhood [65, 67, 68]. In addition, epidemiological 
evidence suggests that H. pylori infection affects micro-
nutrient status through various mechanisms, including 
inhibiting iron absorption by inducing the conversion of 
ascorbic acid (vitamin C) to dehydroascorbic acid; chang-
ing gastric pH which in turn causes malabsorption of 
dietary cobalamin and inactivation of ingested vitamin 
C, inhibiting vitamin B12 absorption, and lowering the 
mucosal concentration of α-tocopherol (vitamin E) in the 
colon [65].

An additional foodborne pathogen, Toxoplasma gondii 
(T. gondii), is a protozoan parasite for which one-third 
of the world population is seropositive. The prevalence 
between communities can range between 10 and 90% 
[69], with contaminated meat and dairy representing 

the main source of infection [70, 71]. The prevalence of 
latent toxoplasmosis in pregnant women is estimated to 
be the highest in South America [72] with prevalence on 
the decline in certain developed countries, possibly due 
to changes in food habits and improved hygiene [73]. 
Infection with the parasite is difficult to detect as most 
healthy people with toxoplasmosis are asymptomatic; 
acute flu-like symptoms occur in only 20% of infected 
individuals. T. gondii may contribute to type 2 diabetes 
mellitus (T2DM) development via different pathways: it 
can trigger an autoimmune response eventually causing 
inflammation of the Langerhans islets, a pancreatic tis-
sue, or directly invade and destroy pancreatic β cells [50, 
74]. While the association between T. gondii and T2DM 
is supported by epidemiological research [75], its exact 
mechanisms in T2DM pathogenesis remain understud-
ied, though recent work points toward T. gondii’s manip-
ulation of the host cell metabolic environment [69].

There is mounting in vitro, in vivo, and epidemiologi-
cal evidence that EDCs, particularly phthalates, BPA, and 
acrylamides have also been identified as playing roles 
in diabetes development and progression [76] as well 
as obesity [77]. These chemicals can interfere with glu-
cose and lipid homeostasis, including affecting the func-
tion of beta-cells in the pancreas [77]. A report from the 
European Union found that EDC exposures contribute 
substantially (20–69% depending on the EDC) to both 
diabetes as well as obesity in children, adults, and older 
women, with a probability of > €18 billion in costs per 
year [78]. Heavy metals like arsenic and cadmium can 
cause insulin resistance leading to T2DM. Arsenic and 
cadmium inhibit proliferator-activated receptor γ, which 
plays a crucial role in glucose metabolism. Cadmium also 
induces pro-inflammatory lipids and cytokines which are 
associated with chronic inflammatory diseases like obe-
sity and T2DM. This has been extensively covered in a 
recent review [79].

Food additives like nitrates and nitrites, e.g., food 
dyes, titanium dioxide, phosphate-containing additives, 
artificial sweeteners, and emulsifiers, are often used to 
enhance the taste, texture, and shelf life of food, may 
also pose chemical hazards. While food additives are 
subjected to rigorous toxicity assessments, some stud-
ies raise concerns about their safety. For example, there 
are mixed associations between metabolic syndrome 
and non-caloric artificial sweeteners (NAS), such as 
sucralose, saccharine, and aspartame. As their name 
indicates, they are low in calories while still providing 
sweetness to foods. In contrast to energy-containing 
sugars such as sucrose, NAS passes through the diges-
tive system without being digested and absorbed by the 
host, instead directly encountering the colonic micro-
biota [80]. Some studies have found that NAS improved 
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glycemic response, while other studies have found NAS 
caused weight gain and a higher risk of T2DM in humans 
[80]. In animals, NAS consumption has been associated 
with more adverse outcomes. For example, aspartame at 
doses 7–15% of the maximum recommended daily intake 
caused learning and memory deficits in mice, which were 
passed down to offspring [81]. In another study, saccha-
rin, sucralose, and aspartame consumption by mice, dose 
exceeding 5  mg/kg of body weight (the acceptable daily 
intake limit set by the US Food and Drug Administration) 
caused impaired glucose tolerance, which was mediated 
by changes in the gut microbiome, including increases in 
the abundances of taxa associated with T2DM in humans 
[80]. This topic has been reviewed extensively elsewhere 
[82, 83]. A thorough review of other food additives and 
human health remains less explored in the literature but 
is beyond the scope of the current manuscript.

Thyroid function
Thyroid hormone and its optimal functioning are essen-
tial for regulating metabolism in humans. The associa-
tion between thyroid hormone, body weight, and energy 
expenditure is well established. Excess production of thy-
roid hormone could induce weight loss, increased energy 
expenditure, reduced cholesterol levels, and increased 
lipolysis and gluconeogenesis. Low hormone levels could 
increase weight gain, reduce energy expenditure, and 
increase cholesterol levels [84]. A systematic review and 
meta-analysis found that exposure to nitrites and nitrates 
has been associated with inhibition of iodine uptake and 
resulting impaired thyroid function, which can cause 
hypertrophy and goiter development, in humans part of 
experimental and clinical studies [53]. Environmental 
toxins can affect women’s reproductive health by increas-
ing the risk of cancer and ovulatory dysfunction. EDCs 
have been shown to cause reproductive development dis-
orders, subfertility, and polycystic ovarian syndrome in 
women [85]. Higher serum BPA concentrations also con-
tribute to these factors in addition to increasing insulin 
resistance and hyperandrogenism.

Cancer development
The carcinogenic potential has been attributed to vari-
ous foodborne hazards, mostly chemical but also bio-
logical. For example, epidemiological evidence has shown 
H. pylori infection or aflatoxicosis is associated with an 
increased risk of stomach cancer across several sys-
tematic reviews and meta-analyses [47–49], cadmium 
ingestion was shown to play a role in colorectal cancer 
metastasis via cell culture in vitro and in mice [29], and 
dietary nitrites and nitrates from processed meats have 
been associated with greater risks of breast, prostate, thy-
roid, and colorectal cancers among adults in large cohort 

studies [25, 26] (Table 1). The colonization of H. pylori in 
the stomach may lead to stomach cancer from chronic 
gastric inflammation, hypochlorhydria (decreased gastric 
acid secretion), and immunomodulation [47–49]. Cad-
mium may increase metastasis through epidermal growth 
factor receptor signaling [29]. Nitrites, commonly used as 
a food additive in processed and cured meats, combine 
in the human body to form carcinogenic N-nitroso com-
pounds (NOCs). Circulating vitamins C and E have been 
shown to inhibit the metabolism of NOCs in the gut [86].

Birth outcomes
Foodborne hazards can jeopardize the health and nutri-
tional status of pregnant women and newborns, affect-
ing a range of development endpoints for the fetus and 
infant, as well as the health of the pregnant woman. Sev-
eral systematic reviews have found H. pylori infection 
was associated with an increased risk of gestational dia-
betes [46], and mycotoxin and arsenic exposure impaired 
fetal growth and neurologic function [57, 87]. Arsenic 
can cross the placenta and accumulate in developing fetal 
organs, as well as in the placenta leading to disruption 
or alteration of cord blood methylation [56, 57]. Arse-
nic has also been identified as a potential risk factor for 
adverse birth outcomes such as neural tube defects as 
described in a systematic review and meta-analysis [88], 
which could be a result of increased fetal folate require-
ments due to arsenic exposure [89, 90]. However, more 
research is needed to ascertain the causal association 
between arsenic due to limited studies on dose response 
and methodological challenges [88]. Mercury and lead 
toxicity have been associated with poor fetal develop-
ment and are known causes of neurodevelopment disor-
ders in offspring. These heavy metals also lower maternal 
manganese and zinc levels during the prenatal period and 
5 months postnatally [63].

Population considerations
High‑risk populations
Foodborne pathogens are more likely to cause severe dis-
ease in individuals with weakened or immature immune 
systems. Immunologically vulnerable groups includ-
ing infants and young children, pregnant women, the 
elderly, and immuno-compromised individuals may be 
at increased risk of contracting food-related diseases [7]. 
The extent to which vulnerable populations are more 
susceptible to short- and long-term adverse FBD-related 
nutritional outcomes as compared to non-vulnerable 
groups has not been established. Children under 5 years 
of age carry a large proportion (40%) of the disease bur-
den attributable to FBD, despite representing only 9% of 
the global population [7]. Given their developing immune 
system and small body size, malnourished infants and 
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children are at higher risk of developing serious forms of 
foodborne diarrheal diseases—exacerbating malnutrition 
and further increasing the morbidity and mortality risk 
[7, 91]. Children can also exhibit behaviors that can lead 
to FBD, for example, by eating food contaminated with 
soil or animal feces [92].

Gender and occupational factors
Gender and occupation are important determinants of 
FBD exposure and potential drivers of adverse health 
outcomes. A recent assessment of traditional livestock 
and fish value chains in 20 LMICs identified socially 
constructed gender differences in exposures and occu-
pations as major drivers of FBD in 19 of 20 reviewed 
studies [93]. While men are more likely to sustain inju-
ries associated with livestock production, fishing, hunt-
ing, and slaughterhouse work, women are more exposed 
to foodborne pathogens during food processing, selling, 
and preparation [93]. These risks are particularly relevant 
in the context of traditional markets where vendors and 
food handlers are in close and frequent contact with food 
and food-contact surfaces that can be highly exposed to 
foodborne or zoonotic pathogens [94]. Differences in 
FBD outcomes attributable to sex or biology have been 
identified for several FBD-related pathogens. For exam-
ple, susceptibility to Listeria monocytogenes infection is 
elevated during pregnancy [93], whereas invasive ame-
biasis is more common in adult males than females, 
though no gender differences have been reported in chil-
dren [95]. A possible sex-dependent association between 
arsenic exposure and child growth in girls has also been 
identified [56]. Likewise, PCB exposure was associated 
with obesity in girls, whereas prenatal PCB exposure was 
associated with reduced birth weight among male infants 
[55].

Research gaps and future directions
In this review, we have examined the epidemiological, 
animal, and in vitro evidence on the associations between 
foodborne biological or chemical hazards, and nutrition-
related outcomes including overweight and obesity, met-
abolic health, thyroid function, cancer development, and 
adverse birth outcomes. We have also considered gender 
differences in exposure to these hazards, noting the par-
ticular risks for women. Findings demonstrate that inte-
gration of food safety and nutrition programs is critical 
to improving population health (Fig. 1). Risks associated 
with unsafe foodborne hazards are substantial, and there 
are ongoing efforts to systematically quantify them at 
the global level [7]. The lack of certainty of evidence, as 
well as limited data attributing disease burden to specific 
foodborne hazards or food categories, limits the ability 
for an adequate response [96]. Evidence points toward a 

negative impact of certain hazards on nutrient absorp-
tion (e.g., helminths, H. pylori) and metabolic functions 
such as glucose and thyroid metabolism (e.g., persistent 
organic pollutants and other chemicals), as well as gas-
trointestinal ulcers (H. pylori). For some hazards (e.g., H. 
pylori), mechanisms are better understood, at least par-
tially, because they have been investigated for decades, 
while there is limited evidence on the effects of other 
biological and chemical hazards on metabolic and human 
health due to a small number of studies and methodolog-
ical differences, such as T. gondii and T2DM pathogen-
esis. For most associations between foodborne hazards 
and health outcomes, cytokine-induced inflammation 
serves as an intermediary pathway. EDCs cause mito-
chondrial dysfunction with an increase in reactive oxygen 
species, causing inflammation-induced obesity. Biologi-
cal hazards such as H. pylori and T. gondii can produce 
inflammatory cytokines leading to insulin resistance and 
T2DM. Heavy metals like lead and cadmium can also 
produce oxidative stress and inflammation causing insu-
lin resistance. Emerging technologies may allow for more 
accessible (i.e., cheaper and faster) detection and mech-
anistic assessment of currently understudied hazards. 
There is also a need to identify novel metrics or tech-
niques for assessing more complex foodborne diseases.

Given the high complexity of foodborne hazards and 
metabolic health outcomes combined with a lack of 
consistent data, this review contextualized the available 
evidence on how FBD impacts physio-pathological pro-
cesses. Other relevant health implications, such as the 
impacts of FBD on cognitive development or impaired 
work productivity are beyond the scope of this arti-
cle. Mortality resulting from FBD was not extensively 
reviewed but should be acknowledged as the extreme 
boundary of FBD-related detrimental health impacts. 
This review highlights the physiological impacts of FBD; 
however, non-physiological effects, such as modified 
consumption behavior in response to FBD scares or out-
breaks as well as other socioeconomic aspects were not 
considered. These behavior changes could have impor-
tant nutrition impacts. With the growing consumer 
interest in organic foods, it is important to compare 
the foodborne hazards associated with organic produce 
to those of conventionally grown crops. While organic 
foods may contain lower levels of pesticide residues, 
studies have found no significant differences in contami-
nation levels of heavy metals, mycotoxins, or bacteria 
[97]. We refer the reader to a recent systematic review 
on the impact of organic foods on chronic diseases [98]. 
Further, the effects of per- and polyfluoroalkyl substances 
(PFASs), which have pleiotropic effects on human health 
through endocrine functions were not covered here but 
can be found in the review by Gaillard et al. [99]. PFASs 
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Fig. 1  Comprehensive overview of health outcomes of foodborne diseases and future directions. As, arsenic; BPA, bisphenol A; Cd, cadmium; DDE, 
dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; PCBs, 
polychlorinated biphenyls; PFASs, perfluoroalkyl and polyfluoroalkyl substances. Created in BioRender
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are found to disrupt thyroid function and hormone syn-
thesis and are associated with metabolic syndrome [100].

Programs and research efforts examining the impact of 
FBDs on health and nutrition status, possibly including 
causal and enabling factors, health outcomes, or poten-
tial mitigating actions are rare but exist. For example, 
research efforts such as the MAL-ED study investigated 
the interaction between enteric disease and malnutrition 
in birth cohorts across eight countries [101]. Other pro-
jects have jointly measured enteric illness and nutrition 
endpoints to evaluate the impact of food safety, water, 
sanitation, and/or nutrition interventions [102]. In the 
USA, federal nutrition programs could be leveraged to 
address food safety. The special supplemental nutrition 
program for Women, Infants and Children (WIC) pro-
tects beneficiaries from lead exposure by providing food 
packages that are rich in vitamin C, calcium, and iron—
these nutrients help to limit lead absorption in the body 
[103]. Food safety regulations in the US are designed by 
the Food and Drug Administration (FDA) known as the 
Integrated Food Safety System (IFSS). The IFSS provides 
vision, guiding principles, and key components of a coor-
dinated approach to food safety. This involves continuous 
improvements and collaboration through multiple initia-
tives, programs, and projects [104]. Further, the Food and 
Nutrition Service (FNS) under the U.S. Department of 
Agriculture develops food safety education, training, and 
technical assistance resources to support FNS program 
operators [105].

Further, there are regulations and standards for the use 
of PCBs under the Toxic Substances Control Act which 
addresses the production, importation, use, and disposal 
[106]. However, these programs and regulations focus 
on public health generally. The regulation to address the 
nutritional impact of foodborne hazards is often over-
looked. Globally, the Codex Alimentarius—a joint Food 
and Agriculture Organization (FAO) and WHO Food 
Standards Program—formulates a voluntary interna-
tional standard, codes of practice, and guidelines to pro-
mote the health of the consumers and ensure fair practice 
in food trade [107]. This also overlooks the direct impact 
on the nutritional status of the population. In contrast, 
the U.S. Agency for International Development (USAID) 
Feed the Future: EatSafe program worked with traditional 
markets in Nigeria and Ethiopia to improve food safety 
by engaging and empowering consumers and vendors to 
demand safe, nutritious food through food safety inter-
ventions [108]. The EatSafe program is also facilitating 
the development and adoption of international standards 
for food safety in traditional markets [109, 110]. This type 
of program ensures appropriate implementation of regu-
lations and ensures safe and nutritious food for popula-
tion health.

Methodological differences across disciplines arise 
when examining the effect of agriculture interventions 
on nutrition status [111], and similar challenges are evi-
dent when connecting food safety, nutrition, and public 
health, emphasizing the need to harmonize the interpret-
ability and actionability of current research. Longitudinal 
studies are required to better assess the temporal rela-
tionships and long-term impacts of FBDs on nutritional 
outcomes. To assess the impact at the population level, 
there is a need for consistent surveillance of FBDs and 
metabolic health outcomes. Of note, the FDA recently 
launched a new unified Human Foods Program. This 
initiative aims to enhance public health through science-
based strategies to prevent foodborne illnesses, reduce 
diet-related chronic diseases, and ensure the safety of 
chemicals in food. The program focuses on three key 
areas: microbial food safety, chemical food safety, and 
nutrition, through the Nutrition Center for Excellence. 
While each area will operate independently with its own 
priorities, they share a common vision of making food a 
source of wellness for everyone [112]. More such trans-
disciplinary and intersectoral efforts are needed across 
the globe to fully understand the burden of FBDs, and the 
role of other associated risk factors including available 
treatments, sex, gender, and environmental stressors to 
inform the design of effective programs and interrupt the 
cycle of poor food safety, malnutrition, and health.
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